On the Solutions of Systems of Difference Equations

نویسندگان

  • İbrahim Yalçinkaya
  • Cengiz Çinar
  • Muhammet Atalay
چکیده

Difference equations appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations having applications in biology, ecology, economy, physics, and so on 1 . So, recently there has been an increasing interest in the study of qualitative analysis of rational difference equations and systems of difference equations. Although difference equations are very simple in form, it is extremely difficult to understand thoroughly the behaviors of their solutions. see 1–12 and the references cited therein. Papaschinopoulos and Schinas 9, 10 studied the behavior of the positive solutions of the system of two Lyness difference equations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Fractional Systems of Difference Equations

This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.

متن کامل

Growth of meromorphic solutions for complex difference‎ ‎equations of Malmquist type

‎In this paper‎, ‎we give some necessary conditions for a complex‎ ‎difference equation of Malmquist type‎ $$‎sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))}‎,$$ ‎where $n(in{mathbb{N}})geq{2}$‎, ‎and $P(f(z))$ and $Q(f(z))$ are‎ ‎relatively prime polynomials in $f(z)$ with small functions as‎ ‎coefficients‎, ‎admitting a meromorphic function of finite order‎. ‎Moreover‎, ‎the properties of finite o...

متن کامل

On meromorphic solutions of certain type of difference equations

‎We mainly discuss the existence of meromorphic (entire) solutions of‎ ‎certain type of non-linear difference equation of the form‎: ‎$f(z)^m+P(z)f(z+c)^n=Q(z)$‎, ‎which is a supplement of previous‎ ‎results in [K‎. ‎Liu‎, ‎L. Z‎. ‎Yang and X‎. ‎L‎. ‎Liu‎, ‎Existence of entire solutions of nonlinear difference‎ ‎equations‎, ‎Czechoslovak Math. J. 61 (2011)‎, no. 2, ‎565--576‎, and X‎. ‎G‎. ‎Qi‎...

متن کامل

Existence of solutions of infinite systems of integral equations in the Frechet spaces

In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

FUZZY LOGISTIC DIFFERENCE EQUATION

In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008